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Abstract: In this study, integral calculus has been applied to the beam analogy method for the evaluation of the non-

dimensional frequency parameters of isotropic functionally graded (FG) rectangular plates resting on Winkler 

elastic foundation. The fundamental assumptions of linear, elastic, small-deflection theory of bending for thin plates 

due to Kirchhoff are taken into consideration. Using direct integration, characteristic orthogonal polynomials 

(COPs) shape function for all-round clamped (CCCC) plate is formulated. The effect of aspect ratios on the natural 

frequency of the plate is examined. It is evident that adding an elastic foundation increases the non-dimensional 

frequency parameter of the plates. Furthermore, like plates resting on Winkler foundation, an increase in aspect 

ratio, causes a corresponding increase in frequency for plates not subjected to the effect of Winkler elastic foundation 

regardless of the boundary configuration. Hence, fixity of supports increases the fundamental natural frequency of 

the plate, and so increases the resistance of the plate to higher forcing frequencies before resonance can occur. It is 

also observed that an increase in power law index decreases the frequency parameters of the plate. The validity of 

the present theory is investigated by comparing some of the present results with those reported in the literature. It 

can be concluded that the proposed theory is accurate and simple in solving the free vibration behavior of FG plates. 

Keywords: Winkler foundation, vibration, functionally graded plate, rectangular plat, characteristic orthogonal 

polynomials.  

I.   INTRODUCTION 

Composite materials have been extensively used in modern engineering structures, especially in the aerospace industry. 

These materials have many advantages over the conventional engineering materials, such as low weight, high stiffness-to-

weight and strength-to-weight ratios, environmental resistance, and the flexibility in design. A functionally graded material 

(FGM) is usually a multi-phased material with the volume fractions of its constituents varied gradually along specific 

directions. Compared with conventional materials, FGMs possess a number of advantages such as reduced residual and 

thermal stresses, improved bonding strength between dissimilar materials, enhanced environmental resistance and 

optimized strength. 

Elastic foundations are common technical problems in engineering and many solutions have been proposed in recent years. 

The simplest type of elastic foundation was proposed by Winkler [1]. Winkler's model expressed the relationship between 

external load and deflection of the foundation surface.  The major deficiency of this model is having no interaction between 

the springs. Pasternak [2] improved the Winkler model by attaching a shear layer to the springs. In the time since, many 
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research works have been conducted to assess the vibration characteristics of plates on elastic foundation. In the time since, 

many research works have been conducted to assess the vibration characteristics of plates on elastic foundation. 

A new version of the differential quadrature method for assessing the vibration characteristics of rectangular plates resting 

on elastic foundations carrying any number of sprung masses was proposed by Hsu [3]. The first six natural frequencies of 

plates with various foundation stiffnesses were highlighted. They also analyzed the effect of aspect ratios on the natural 

frequency of plates on elastic foundation. Using the finite cosine integral transform method, Li et al. [4] presented the 

analytical solutions for rectangular plates on the Winkler elastic foundation with four edges free. In the analysis, the classical 

Kirchhoff rectangular plate was considered. Chakraverty and Pradhan [5] investigated the free vibration of functionally 

graded (FG) rectangular plates subject to different sets of boundary conditions within the framework of classical plate 

theory. The parametric resonance characteristics of functionally-graded material (FGM) plates on elastic foundation under 

biaxial in plane periodic load was studied by Ramu and Mohanty [6]. Finite element method and Hamilton’s principle were 

utilized to establish the governing equations in a discrete form. Floquet’s theory was applied to determine the instability 

regions of FGM plate resting on elastic foundation. The three-dimensional vibration of a functionally graded sandwich 

rectangular plate on an elastic foundation with normal boundary conditions was analyzed by Cui et al. [7] using a semi-

analytical method based on three-dimensional elasticity theory. In their study, Kumar et al. [8] investigated the free vibration 

behaviour of thin functionally graded rectangular plates by using the dynamic stiffness method (DSM). Zhao-chun et al. [9] 

more recently assessed the free vibration characteristics of porous functionally graded material (FGM) rectangular plates 

on a Winkler-Pasternak elastic foundation under the influence of temperature based on the classical thin plate theory and 

Hamilton principle. The Voigt mixed power law model and random distribution model of pores were used to characterize the 

material properties of porous FGM rectangular plates, and the uniform temperature rise in a porous FGM rectangular plate 

and the temperature dependency of material properties were considered. 

It's crucial to quickly and precisely examine the plate vibration properties. Inadequate calculations and consideration of 

deflections and natural frequencies can result in safety and cost-saving mistakes as well as the complete collapse of a 

structure, particularly when the vibration reaches resonance. Therefore, it is necessary to create a quicker and easier method 

that precisely predicts how functionally graded plates with different boundary conditions would behave on an elastic basis. 

This is the primary focus of the current study. 

II.   THEORETICAL BACKGROUND 

The formulation of the exact solution to the governing differential equation of the plate studied, development of the 

characteristic orthogonal shape functions and the fundamental natural frequencies of all round clamped plate (CCCC) with 

various aspect ratios are presented. 

Formulation of an Exact Solution to the Governing Differential Equation  

According to the theory of the classical Kirchhoff plate, the governing equation of motion for an unloaded plate on an elastic 

foundation is: 

𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑤

𝜕𝑦4
+

𝑘

𝐷
𝑤(𝑥, 𝑦, 𝑡) +

𝜌ℎ

𝐷

𝜕2𝑤

𝜕𝑡2
= 0                                        (1) 

where 

𝐷 =
𝐸ℎ3

12(1 − 𝜐2)
                                                                       (2) 

 

D = flexural rigidity of plate  

E = Young’s moduli 

 = Poisson’s ratio 

h = thickness of plate 

  = density of plate 

w(x, y, t) = out-of-plane displacement 
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k = reaction coefficient of foundation 

Assuming a harmonic vibration, we may write: 

w(x, y, t) + 𝑊(𝑥, 𝑦)𝑠𝑖𝑛𝜔𝑡                                                                          (3) 

Where (𝑥, 𝑦) is the shape function describing the modes of vibration and w is the natural 

circular frequency of the plate. 

(
𝜕4

𝜕𝑥4
+ 2

𝜕4

𝜕𝑥2𝜕𝑦2
+

𝜕4

𝜕𝑦4
) 𝑤(𝑥, 𝑦, 𝑡) +

𝑘

𝐷
𝑤(𝑥, 𝑦, 𝑡) +

𝜌ℎ

𝐷
(

𝜕2𝑤

𝜕𝑡2
) (𝑥, 𝑦, 𝑡) = 0                                        (4) 

Substituting Equation (3) into Equation (4) gives 

𝑠𝑖𝑛𝜔𝑡 (
𝜕4

𝜕𝑥4
+ 2

𝜕4

𝜕𝑥2𝜕𝑦2
+

𝜕4

𝜕𝑦4
) 𝑤(𝑥, 𝑦) +

𝑘

𝐷
𝑤(𝑥, 𝑦)𝑠𝑖𝑛𝜔𝑡 −

𝜌ℎ

𝐷
𝜔2𝑤𝑠𝑖𝑛𝜔𝑡 = 0                   (5) 

Dividing Equation (5) by 𝑠𝑖𝑛𝜔𝑡 we have 

𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑤

𝜕𝑦4
+

𝑘𝑤

𝐷
−

𝜌ℎ𝜔2𝑤

𝐷
= 0                                                   (6) 

where w represents 𝑤(𝑥, 𝑦) 

Multiplying Equation (6) by w, we have 

(
𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑤

𝜕𝑦4
) 𝑤 +

𝑘𝑤2

𝐷
 −

𝜌ℎ𝜔2𝑤2

𝐷
= 0                                            (7) 

Integrating both sides of Equation (7) 

∫ ∫ ((
𝜕4𝑤

𝜕𝑥4
) 𝑤 + (2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
) 𝑤 +  (

𝜕4𝑤

𝜕𝑦4
) 𝑤 +

𝑘𝑤2

𝐷
−

𝜌ℎ𝜔2𝑤2

𝐷
 )

𝑏

0

𝑎

0

𝜕𝑥𝜕𝑦 = 0    (8) 

But 

𝜁 =
𝑥

𝑎
 

 

𝜂 =
𝑦

𝑏
 

After substituting 𝜁 and 𝜂, Equation (8) becomes 

∫ ∫ ((
𝜕4𝑤

𝑎4𝜕𝜁4
) 𝑤 +

2𝑏2

𝑎2
(

𝜕4𝑤

𝜕𝜁2𝜕𝜂2
) 𝑤 +

1

𝑏4
(

𝜕4𝑤

𝜕𝜂4
) 𝑤 +

𝑘𝑤2

𝐷
−

𝜌ℎ𝜔2𝑤2

𝐷
 ) 𝑎𝑏

1

0

1

0

𝜕𝜁𝜕𝜂 = 0    (9) 

 

where 𝜕𝑥 = 𝑎𝜕𝜁  and  𝜕𝑦 = 𝑏𝜕𝜂   

Multiplying Equation (9) by 𝑏4, we have 

𝑎𝑏

𝑏4
∫ ∫ ((

𝑏4𝜕4𝑤

𝑎4𝜕𝜁4
) 𝑤 +

2𝑏2

𝑎2
(

𝜕4𝑤

𝜕𝜁2𝜕𝜂2
) 𝑤 + (

𝜕4𝑤

𝜕𝜂4
) 𝑤 +

𝑏4𝑘𝑤2

𝐷
−

𝑏4𝜌ℎ𝜔2𝑤2

𝐷
 )

1

0

1

0

𝜕𝜁𝜕𝜂 = 0    (10) 

Substituting 𝛽 =
𝑎

𝑏
 into Equation (10), we have 

∫ ∫ (
1

𝛽4
(

𝜕4𝑤

𝜕𝜁4
) 𝑤 +

2

𝛽2
(

𝜕4𝑤

𝜕𝜁2𝜕𝜂2
) 𝑤 + (

𝜕4𝑤

𝜕𝜂4
) 𝑤 +

𝑏4𝑘𝑤2

𝐷
−

𝑏4𝜌ℎ𝜔2𝑤2

𝐷
 )

1

0

1

0

𝜕𝜁𝜕𝜂 = 0         (11) 
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          ∫ ∫ ( (
1

𝛽4
(

𝜕4𝑤

𝜕𝜁4
) 𝑤 +

2

𝛽2
(

𝜕4𝑤

𝜕𝜁2𝜕𝜂2
) 𝑤 + (

𝜕4𝑤

𝜕𝜂4
) 𝑤) 𝜕𝜁𝜕𝜂 +  ∫ ∫

𝑏4𝑘𝑤2

𝐷

1

0

1

0

𝜕𝜁𝜕𝜂   − ∫ ∫
𝑏4𝜌ℎ𝜔2𝑤2

𝐷

1

0

1

0

 ) 𝜕𝜁𝜕𝜂

1

0

1

0

= 0                                                                                                                                                                    (12) 

But 

                                        𝑤(𝑥, 𝑦) = 𝑤(𝜁, 𝜂) = 𝐴𝑆𝑝                                                                            (13)   

Substituting Equation (13) into (12), we have 

   ∫ ∫ ( (
1

𝛽4
(

𝜕4(𝐴𝑆𝑝)

𝜕𝜁4
) 𝐴𝑆𝑝 +

2

𝛽2
(

𝜕4(𝐴𝑆𝑝)

𝜕𝜁2𝜕𝜂2
) 𝐴𝑆𝑝 + (

𝜕4(𝐴𝑆𝑝)

𝜕𝜂4
) 𝐴𝑆𝑝) 𝜕𝜁𝜕𝜂 +  ∫ ∫

𝑏4𝑘(𝐴𝑆𝑝)2

𝐷

1

0

1

0

𝜕𝜁𝜕𝜂   

1

0

1

0

− ∫ ∫
𝑏4𝜌ℎ𝜔2(𝐴𝑆𝑝)2

𝐷

1

0

1

0

 ) 𝜕𝜁𝜕𝜂 = 0                                                                                                        (14)  

Since A is a constant, Equation (14) can be re-written as 

𝐴2 ∫ ∫ ( (
1

𝛽4
(

𝜕4𝑆𝑝

𝜕𝜁4
) 𝑆𝑝 +

2

𝛽2
(

𝜕4𝑆𝑝

𝜕𝜁2𝜕𝜂2
) 𝑆𝑝 + (

𝜕4𝑆𝑝

𝜕𝜂4
) 𝑆𝑝) 𝜕𝜁𝜕𝜂 + 𝐴2 ∫ ∫

𝑏4𝑘𝑆𝑝
2

𝐷

1

0

1

0

𝜕𝜁𝜕𝜂   

1

0

1

0

− ∫ ∫
𝑏4𝜌ℎ𝜔2𝑆𝑝

2

𝐷

1

0

1

0

 ) 𝜕𝜁𝜕𝜂   = 0                                                                                                              (15)  

 

𝐿𝑒𝑡 𝐽2 =  [
1

𝛽4
(

𝜕4𝑆𝑝

𝜕𝜁4
) 𝑆𝑝 +

2

𝛽2
(

𝜕4𝑆𝑝

𝜕𝜁2𝜕𝜂2
) 𝑆𝑝 + (

𝜕4𝑆𝑝

𝜕𝜂4
)]                                                                         (16) 

Substituting Equation (16) into Equation (15) yields 

𝐴2 ∫ ∫(𝐽2𝑆𝑝)𝜕𝜁𝜕𝜂

1

0

1

0

+  𝐴2 ∫ ∫
𝑏4𝑘𝑆𝑝

2

𝐷

1

0

1

0

𝜕𝜁𝜕𝜂 − 𝐴2 ∫ ∫
𝑏4𝜌ℎ𝜔2𝑆𝑝

2

𝐷

1

0

1

0

𝜕𝜁𝜕𝜂 = 0               (17) 

 

𝐿𝑒𝑡 𝐵2 =  ∫ ∫ 𝑆𝑝
2𝜕𝜁𝜕𝜂                                                                               (18)

1

0

1

0

 

and 

𝐿𝑒𝑡 𝐶2 =  ∫ ∫(𝐽2𝑆𝑝)𝜕𝜁𝜕𝜂                                                                              (19)

1

0

1

0

 

 

𝐴2𝐶2 + 𝐴2𝐵2

𝑏4𝑘

𝐷
− 𝐴2𝐵2

𝑏4𝜌ℎ𝜔2

𝐷
=   0                                                                     (20) 

Dividing Equation (20) by 𝐴2, we have 

𝐶2 + 𝐵2

𝑏4𝑘

𝐷
− 𝐵2

𝑏4𝜌ℎ𝜔2

𝐷
=   0                                                                     (21) 

Dividing Equation (21) by 𝐵2 yields 

𝐶2

𝐵2

+
𝑏4𝑘

𝐷
 −  

𝑏4𝜌ℎ𝜔2

𝐷
=   0                                                                     (22) 
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𝑏4𝜌ℎ𝜔2

𝐷
=  

𝐶2

𝐵2

+
𝑏4𝑘

𝐷
                                                                       (23) 

 

𝜌ℎ𝜔2 =   (
𝐶2

𝐵2

+
𝑏4𝑘

𝐷
)

𝐷

𝑏4
                                                                  (24) 

 

𝜌ℎ𝜔2 =  
𝐶2

𝐵2

𝐷

𝑏4
+ k                                                                           (25) 

 

𝜔2 =  
1

𝑏4

𝐶2

𝐵2

𝐷

𝜌ℎ
+ k                                                                            (26) 

 

𝜔 =  
1

𝑏2
 √

𝐶2

𝐵2

√
𝐷

𝜌ℎ
+ √𝑘                                                                          (27) 

𝜔 =  
√

𝐶2

𝐵2

𝑏2
 √

𝐷

𝜌ℎ
+ √𝑘                                                                            (28) 

 

𝜔 =  
√

𝐴1

𝛽4 +
𝐵1

𝛽2 + 𝐶1

𝑏2
 √

𝐷

𝜌ℎ
+ √𝑘                                                                            (29) 

where 

𝛽 =  
𝑎

𝑏
 ,

𝐶2

𝐵2

=  
𝐴1

𝛽4
+

𝐵1

𝛽2
+ 𝐶1  

𝐴1, 𝐵1, 𝐶1 are numerical coefficients that arise after evaluating the ratio 
𝐶2

𝐵2

 

The use of dimensionless coordinates, 𝜁 and 𝜂, has simplified the evaluation of the integrals by making the limits of 

integration to run from 0 to 1. 

Now for each value of 𝛽, the equation of 𝜔 is obtained in the form 

𝜔 =  
𝐻𝑏𝛽

𝑏2
 √

𝐷

𝜌ℎ
+ √𝑘                                                                           (30) 

Rearranging Equation (30) and making 𝐻𝑏𝛽 the subject of the equation gives 

𝐻𝑏𝛽 =  𝜔𝑏2 √
𝜌ℎ

𝐷
− √𝑘                                                                               (31) 

Where 𝐻𝑏𝛽 is a numerical coefficient called the non-dimensional frequency parameter, expressed in terms of the dimension 

‘b’ for a plate of aspect ratio 𝛽 =  
𝑎

𝑏
 

It is clear from Equations (29) and (30) that 

𝐻𝑏𝛽 =   √
𝐴1

𝛽4
+

𝐵1

𝛽2
+ 𝐶1                                                                             (32) 
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In order to obtain the non-dimensional frequency parameter, 𝐻𝑏𝛽, for a plate of inverse aspect ratio, φ =  
𝑏

𝑎
,  

1

 φ
 is substituted 

for 𝛽 in Equations (29) and (32) to get Equations (33) and (34) respectively 

                     𝜔 =  
√𝐴1φ4 + 𝐵1φ2 + 𝐶1

𝑏2
 √

𝐷

𝜌ℎ
+ √𝑘                                                                   (33) 

 

𝐻𝑏𝛽 =   √𝐴1φ4 + 𝐵1φ2 + 𝐶1                                                                                 (34) 

Beam Analogy Method 

The beam analogy method is used in this research work to carry out dynamic analysis of rectangular, thin, isotropic plates 

because of the following advantages it offers. It is simple and straight-forward; it is not rigorous or complex and does not 

involve complicated mathematics. It uses basic principles like partial differentiation and integration, work, conservation of 

energy, beam flexure, plate geometry and material properties of the plate. Evaluation of integrals is further simplified by 

the use of a dimensionless co-ordinate system, ζ and η which makes the limits of integrals to run from zero to unity.  

The beam analogy method makes use of characteristic orthogonal polynomials (COPs), (Chakraverty [10]) to obtain 

meaningful deflection shape functions for each beam strip and plate analyzed in this work. The detailed steps for 

development of characteristic orthogonal polynomials are highlighted in this study. Chakraverty [10] gave assurance that 

when COPs are used the numerical solutions converge to the exact solution.  

The differential equation of motion of the plate (Equation (1)) is a fourth order equation in x and y co-ordinates. When 

expressed in dimensionless form, it boils down to a fourth order equation in ζ and η co-ordinates. So, its solution, which is 

the deflection shape function, will be a fourth degree polynomial in ζ and η. Since the governing differential equation of 

motion given in this study is a fourth order equation, then the shape function for each beam strip is likely to be a fourth 

degree polynomial. So, assuming the beam strips in ζ and η directions have the following deflection shape functions:  

       w(ζ) = a0+ a1ζ + a2ζ2 + a3ζ3 + a4ζ4       (35)  

                    w(η) =b0 +b1η+b2 +b3η3 +b4η4       (36)  

The free edge of a plate has three boundary conditions (i.e., shear, bending moment and twisting moment are zeros), instead 

of two boundary conditions. To take care of this extra boundary condition, the shape function must contain an additional 

term for the problem to be statically determinate. So, for a beam strip having one free end, a fifth degree polynomial is used, 

thus:  

w(ζ) =a0+a1ζ+a2ζ2 +a3ζ3 +a4ζ4+a5ζ5                                                                         (37) 

 w(η) =b0 +b1η+b2 +b3η3 +b4η4+b5η5                                                                       (38)  

The values of a1 to a4 and b1 to b4 are determined with the aid of the beam’s boundary conditions, as presented in this study. 

Naturally, since the plate is a two-dimensional array of both beam strips (in ζ and η directions), the deflection shape 

functions for the plates were obtained from the following expression:  

w (ζ, η) = w(ζ).w(η)                                                                                                     (39)  

Development of Characteristic Orthogonal Polynomials (COPs) 

Let us consider a rectangular plate of dimensions, a along x and b along y, of uniform thickness shown in Figure 1. If the 

deflection pattern of the plate along x is represented by a beam strip qualitatively, the beam function along x is taken as 

F(x). Similarly, the corresponding beam function along y is taken as F(y). 

 

Figure 1: A rectangular plate 
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Assuming the plate deflections in the form of a series, the solution for prismatic beam of constant stiffness EI and length 

spanning along x can be written as: 

wx = F(x) = ∑ Xmxm

∞

m=1

                                                                                                            (40) 

and in the y-direction, 

wy =  F(y) = ∑ Ynyn

∞

n=1

                                                                                                                (41) 

Where, 

wx and wy are plate deflections at point (x,y) 

Xm and Yn
 are constant parameters in x and y directions respectively 

x, y are coordinates of points 

m and n are series to infinity limit  

F(x) and F(y) are beam functions along x and y directions respectively 

 

Bhat [11] developed a systematic method of constructing the shape function of rectangular plates using the characteristic 

orthogonal polynomial by assuming the displacement function as a product of two functions: one which is a pure function 

of x and the other is of y so that, 

w(x, y) = F(x). F(y) = wx. wy                                                                                                  

or 

w(x, y) = ∑ ∑ 𝑋𝑚𝑥𝑚Ynyn

∞

n=1

∞

𝑚=1

                                                                                                 (42) 

Expressing Equations (40), (41), (42) in the form of non-dimensional parameters,  R and Q , Equation (40) becomes 

𝑤𝑥 = 𝐹(x) = ∑ 𝑋𝑚

∞

𝑚=1

 (𝑎𝑅)𝑚    = ∑ 𝑋𝑚amR𝑚

∞

𝑚=1

                                                                  (43) 

In the same manner, substituting y = bQ into Equation (41), we have: 

𝑤𝑦 = 𝐹(y) = ∑ 𝑌𝑛

∞

𝑛=1

 (𝑏𝑄)𝑛    = ∑ 𝑌𝑛bnQ𝑛

∞

𝑛=1

                                                                          (44) 

Substituting Equations (42) and (43) into Equation (42) we obtain: 

w(x, y) = ∑ ∑ 𝑋𝑚amR𝑚

∞

n=1

∞

𝑚=1

 𝑌𝑛bnQ𝑛                                                                                         (45) 

or 

w(x, y) = ∑ ∑ 𝐴𝑚Rm𝐵𝑛

∞

n=1

∞

𝑚=1

Qn                                                                                                     (46) 

where 

Am and Bn are coefficients that are to be determined from the boundary conditions at the edges of the plate. 

The equation of an orthotropic plate in free vibration is a fourth order differential, the density of the plate being constant. 

Therefore, m and n in Equation (46) must be equal to 4, Onyeyili [12]. Expanding Equations (44), (45) and (46) to 4th order 

power series, we obtain 
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𝑤𝑥 = 𝐹(x) = ∑ 𝐴𝑚R𝑚

4

𝑚=1

=  A0 + A1R + A2R2 + A3R3 + A4R4                                  (47) 

wy =  F(y) = ∑ BnQn

4

n=1

  =  B0 + B1Q + B2Q2 + B3Q3 + B4Q4                                   (48) 

w(x, y) = ∑ ∑ 𝐴𝑚R𝑚𝐵𝑛Qn

∞

𝑛=1

∞

m=1

 = 𝐹(x). G(y)                                                                                   

 w(x, y) = (A0 + A1R + A2R2 + A3R3 + A4R4)(B0 + B1Q + B2Q2 + B3Q3 + B4Q4)   (49) 

The bending moments of plate in x and y directions are given as:  

Mx =
−Dx ∂2w

∂x2
                                                                                                                                (50) 

My =
−Dy ∂2w

∂y2
                                                                                                                                (51) 

where Dx and Dy are flexural rigidities of the plate in the x and y directions. 

Substituting into Equations (50) and (51) wx and wy from Equations (47) and (48), Mx and My can be non-dimensionalized 

into the following expression 

Mx = (2𝐴2 + 6𝐴3R + 12𝐴4R2)
−Dx

a2
                                                                                       (52) 

and 

My = (2𝐵2 + 6𝐵3Q + 12𝐵4Q2)
−Dy

b2
                                                                                     (53) 

Equations (47), (48), (52), and (53) are used to obtain the displacement functions of the plate.  

Boundary Conditions 

If a plate is clamped at the boundary, then the deflection and the slope of the middle surface must vanish at the boundary. 

On a clamped edge parallel to the y axis at x = a, the boundary conditions are 

                                                      w|x=a = 0                                                             (54)                    

                                          
∂w

∂x
|x=a = 0                                                                        (55) 

The boundary conditions on the clamped edge parallel to the x axis at y = b are 

                                                          w|y=b = 0                                                               (56)            

                                                                      
∂w

∂x
|y=b = 0                                                                               (57) 

Development of Shape Function for CCCC Plate 

 

Figure 2:  Thin rectangular plate whose edges are clamped (CCCC) resting on Winkler foundation 
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Boundary conditions  

• Deflections at all edges are zero 

• Slope at all edges is zero 

 

For 𝜁 − directions 

At  𝜁 = 0 

From Equation (47) 

𝑊𝑥 = 𝐴0 = 0 

∴  𝐴𝑜  = 0                                                                                                          (58) 

   
𝜕𝑊𝜁

𝑎𝜕𝜁
 =  

𝜕𝑊𝑥

𝑎𝜕𝑥
(𝐴0 + 𝐴1𝜁 + 𝐴2𝜁2 + 𝐴3𝜁3 + 𝐴4𝜁4) 

 
𝜕𝑊𝜁

𝑎𝜕𝜁
 =

𝐴1+2𝐴2𝜁+3𝐴3𝜁2+4𝐴4𝜁3 

𝑎
                                                                         (59) 

Then, 

At 𝜁 = 0 

𝜕𝑊𝜁

𝜕𝜁
 = 0 = 𝐴1 = 0 

∴    𝐴1 = 0                                                                                                (60) 

At 𝜁 = 1 

     𝑊𝑋 = 0 = 𝐴2 + 𝐴3 + 𝐴4  

∴     𝐴2 = −(𝐴3 + 𝐴4)                                                                                                       (61) 

 From Equation (59), 

   
𝜕𝑊𝜁

𝜕𝜁
=     2𝐴2 + 3𝐴3 + 4𝐴4 = 0 

Substituting   𝐴2 = −(𝐴3 + 𝐴4), we obtain 

−2(𝐴3 + 𝐴4) + 3𝐴3 + 4𝐴4 = 0 

𝐴3 + 2𝐴4 = 0 

∴   𝐴3 = −2𝐴4                                                                                                                            (62) 

𝑇ℎ𝑢𝑠,      𝐴2 = −(−2𝐴4 + 𝐴4) = 𝐴4                                                                                        (63) 

Putting the values of 𝐴0, 𝐴1, 𝐴2,𝐴3, into (47) we have  

𝑊𝑥 = Ϝ(𝜁) = 𝐴4𝜁2 + (−2𝐴4)𝜁3 + 𝐴4𝜁4 = 𝐴4(𝜁2 − 2𝜁3 + 𝜁4)                                  (64) 

 

For  𝜂 − 𝑑𝑖𝑟𝑒𝑡𝑖𝑜𝑛 

At 𝜂 = 0 

From Equation (48), 

  𝑊𝑦 = 𝐵0 = 0 

 ∴ 𝐵0 = 0                                                                                                                                 (65) 

   
𝜕𝑊𝑦  

𝜕𝑦
=

𝜕𝑊𝑦

𝑏𝜕𝜂
=

1

𝑏
(𝐵1 + 2𝐵2𝜂 + 3𝐵3𝜂2 + 4𝐵4𝜂3)                                                             (66) 
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𝜕𝑊𝑦

𝜕𝑦
= 0 =

1

𝑏
𝐵1 = 0 

𝑠𝑖𝑛𝑐𝑒 
1

𝑏
≠ 0 

𝐵1 = 0                                                                                                                                            (67) 

At 𝑄 = 1 

  𝑊𝑦 = 𝐺(𝜂 = 1) = 0 = 𝐵2 + 𝐵3 + 𝐵4 = 0 

⟹  𝐵2 + 𝐵3 + 𝐵4 = 0                                                                                                                  (68) 

𝐵2 = −(𝐵3 + 𝐵4)                                                                                                                       (69) 

From Equation (66) 

𝜕𝑊𝑦

𝜕𝑦

= 0 =
1

𝑏
(2𝐵2 + 3𝐵3 + 4𝐵4) = 0 

𝑠𝑖𝑛𝑐𝑒 
1

𝑏
 ≠ 0 

⟹       (2𝐵2 + 3𝐵3 + 4𝐵4) = 0                                                          (70) 

Putting the value of 𝐵2 of Equation (69) into Equation (70), we obtain 

−2(𝐵3 + 𝐵4) + 3𝐵3 + 4𝐵4 = 0  

⟹ 𝐵3 + 2𝐵4 = 0 

∴  𝐵3 = −2𝐵4                                                                                                                               (71) 

Putting the expression of (71) into (69) we obtain 

𝐵2 = −(𝐵3 + 𝐵4) 

⟹    𝐵2 = −(−2𝐵4 + 𝐵4) 

∴      𝐵2 = −(−𝐵4) 

𝐵2 = 𝐵4                                                                                                                                       (72) 

Putting the expression of 𝐵0, 𝐵1, 𝐵2𝑎𝑛𝑑 𝐵4 into Equation (48), we have 

𝑤𝑦 = 𝐺(𝜂) = 𝐵4𝜂2 + (−2𝐵4)𝜂3 + 𝐵4𝜂4 

=   𝐵4(𝜂2 − 2𝜂3 + 𝜂4)                                                                                                             (73) 

Multiplying Equations (64) and (73) we obtain the displacement function for a rectangular plate clamped supported all 

round as; 

𝑤(𝜁, 𝜂) = Ϝ(𝜁) ∗ 𝐺(𝜂) = 𝑊𝑥 ∗ 𝑊𝑦 

𝑤(𝜁, 𝜂) = 𝐴4( 𝜁2 − 2 𝜁3 +  𝜁4) ∗ 𝐵4(𝜂2 − 2𝜂3 + 𝜂4) 

𝑤(𝜁, 𝜂) = 𝐴4𝐵4( 𝜁2 − 2 𝜁3 +  𝜁4)(𝜂2 − 2𝜂3 + 𝜂4) 

𝑤(𝜁, 𝜂) = 𝐾( 𝜁2 − 2 𝜁3 +  𝜁4)(𝜂2 − 2𝜂3 + 𝜂4)                                                                 (74) 

Development of Fundamental Natural Frequency Expression of CCCC Plate for Free Vibration 

w(x, y) = w (ζ , η ) = kSp  

where: k = deflection constant  

Sp = a polynomial in ζ and η  

From Equation (74) we have 
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𝑤(ζ, η) = 𝑆𝑝 = (𝜁2 −  2𝜁3 + 𝜁4 )(𝜂2 −  2𝜂3 + 𝜂4 )                                                                               (75)    

𝜕4𝑆𝑝

𝜕𝜁4
=  24(𝜂2 −  2𝜂3 + 𝜂4 ) 

𝜕4𝑆𝑝

𝜕𝜂4
= 24(𝜁2 −  2𝜁3 + 𝜁4) 

𝜕4𝑆𝑝

𝜕𝜁2𝜕𝜂2 = 4(1 − 6𝜁 −  6𝜁2 ) (1 − 6𝜂 +  6𝜂2 ) 

𝐾2 =  
1

𝛽4
(

𝜕4𝑆𝑝

𝜕𝜁4
) +  

2

𝛽2
(

𝜕4𝑆𝑝

𝜕𝜁2𝜕𝜂2
) +  (

𝜕4𝑆𝑝

𝜕𝜂4
) 

  =  
1

𝛽4
24(𝜂 −  2𝜂3 + 𝜂4 ) +

2

𝛽2
4(1 − 6𝜁 −  6𝜁2 ) (1 − 6𝜂 +  6𝜂2 )  + 24(𝜁2 −  2𝜁3 + 𝜁4) 

But  

(
𝜕4𝑆𝑝

𝜕𝜁4
) 𝑆𝑝 = 24(𝜂2 −  2𝜂3 + 𝜂4 )(𝜁2 −  2𝜁3 + 𝜁4 )(𝜂2 −  2𝜂3 + 𝜂4 )                   

                      = 24(𝜁2 −  2𝜁3 + 𝜁4 )(𝜂4 − 4𝜂5 + 6𝜂6 − 4𝜂7 + 𝜂8) 

 

(
𝜕4𝑆𝑝

𝜕𝜂4
) 𝑆𝑝 =  24(𝜁2 −  2𝜁3 + 𝜁4)(𝜁2 −  2𝜁3 + 𝜁4 )(𝜂2 −  2𝜂3 + 𝜂4 ) 

                      = 24(𝜂2 −  2𝜂3 + 𝜂4 )(𝜁4 −  4𝜁5 + 6𝜁6 − 4𝜁7 + 𝜁8 ) 

 

(
𝜕4𝑆𝑝

𝜕𝜁2𝜕𝜂2) 𝑆𝑝 = 4(1 − 6𝜁 −  6𝜁2 ) (1 − 6𝜂 +  6𝜂2 ) (𝜁 −  2𝜁3 + 𝜁4 )(𝜂 −  2𝜂3 + 𝜂4 )  

                       = 4(𝜁2 −  8𝜁3 + 19𝜁4 − 18𝜁5 + 6𝜁5) ( 𝜂2 −  8𝜂3 + 19𝜂4 − 18𝜂5 + 6𝜂6 ) 
 

Recall that  

𝑆𝑝 = (𝜁2 −  2𝜁3 + 𝜁4 )(𝜂2 −  2𝜂3 + 𝜂4 ) 

Therefore 

 𝑆𝑝
2 = (𝜁4 − 4𝜁5 +  6𝜁6 −  4𝜁7 + 𝜁8 )(𝜂4 −  4𝜂5 + 6𝜂6 − 4𝜂7 +  𝜂8)                                                  (76) 

Now 

∫ ∫ (
𝜕4𝑆𝑝

𝜕𝜁4 ) 𝑆𝑝
1

0

1

0
𝜕𝜁𝜕𝜂 = 

 ∫ ∫ 24(𝜁 −  2𝜁3 + 𝜁4 )(𝜂2 − 4𝜂4 + 2𝜂5 + 4𝜂6 −  4𝜂7 + 𝜂8) 

1

0

1

0

𝜕𝜁𝜕𝜂 

=  24 (
1

2
− 

2

4
+ 

1

5
) (

1

5
− 

2

3
+  

6

7
−  

4

8
+  

1

9
)   

   = 0.001269845 

Therefore, 

∫ ∫ (
𝜕4𝑆𝑝

𝜕𝜁4
) 𝑆𝑝

1

0

1

0

𝜕𝜁𝜕𝜂 =  0.001269845
1

𝛽4
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∫ ∫ (
𝜕4𝑆𝑝

𝜕𝜁2𝜕𝜂2
) 𝑆𝑝

1

0

1

0

𝜕𝜁𝜕𝜂 

                                      = 4(𝜁2 −  8𝜁3 + 19𝜁4 − 18𝜁5 + 6𝜁5) ( 𝜂2 −  8𝜂3 + 19𝜂4 − 18𝜂5 + 6𝜂6 )𝜕𝜁𝜕𝜂 

=  4 (
1

3
−  2 +  

19

5
−  3 +  

6

7
) (

1

3
−  2 + 

19

5
−  3 +  

6

7
) 

                                                 =  0.00036281175 

∫ ∫
2

𝛽2
 (

𝜕4𝑆𝑝

𝜕𝜁2𝜕𝜂2
) 𝑆𝑝

1

0

1

0

𝜕𝜁𝜕𝜂 = 0.0007257235
1

𝛽2
 

∫ ∫  (
𝜕4𝑆𝑝

𝜕𝜂4
) 𝑆𝑝

1

0

1

0

𝜕𝜁𝜕𝜂 = 0.001269845 

𝐶2 = ∫ ∫  (𝐾2𝑆𝑝)

1

0

1

0

𝜕𝜁𝜕𝜂 

𝐶2 = ∫ ∫  (
1

𝛽4
 (

𝜕4𝑆𝑝

𝜕𝜂4
) +

2

𝛽2
 (

𝜕4𝑆𝑝

𝜕𝜁2𝜕𝜂2
) + (

𝜕4𝑆𝑝

𝜕𝜂4
))

1

0

1

0

𝑆𝑝𝜕𝜁𝜕𝜂  

 

       = ∫ ∫  
1

𝛽4
 (

𝜕4𝑆𝑝

𝜕𝜂4
) 𝑆𝑝𝜕𝜁𝜕𝜂 + ∫ ∫

2

𝛽2
 (

𝜕4𝑆𝑝

𝜕𝜁2𝜕𝜂2
) 𝑆𝑝𝜕𝜁𝜕𝜂

1

0

1

0

 +

1

0

1

0

 ∫ ∫  (
𝜕4𝑆𝑝

𝜕𝜂4
) 𝑆𝑝𝜕𝜁𝜕𝜂

1

0

1

0

 

 

𝐶2 = 0.001269845
1

𝛽4  + 0.0007257235
1

𝛽2 + 0.001269845 

∫ ∫  𝑆𝑝
2

1

0

1

0

𝜕𝜁𝜕𝜂 =  ∫ ∫  

1

0

1

0

(𝜁4 − 4𝜁5 +  6𝜁6 −  4𝜁7 + 𝜁8 )(𝜂4 −  4𝜂5 + 6𝜂6 − 4𝜂7 +  𝜂8)𝜕𝜁𝜕𝜂 

                  =  ( 
1

5
− 

4

6
+  

6

7
−  

4

8
+ 

1

9
) ( 

1

5
−  

4

6
+  

6

7
−  

4

8
+  

1

9
) 

                                                            =  0.00000251953 

𝐵2 = ∫ ∫  𝑆𝑝
2

1

0

1

0

𝜕𝜁𝜕𝜂 = 0.00000251953 

 

𝐶2

𝐵2

=
0.001269845

1
𝛽4   +  0.0007257235

1
𝛽2  + 0.001269845

0.00000251953
 

 

=  
504.1067884

𝛽4
+ 

288.0603414

𝛽2
+  504.1067884 

From Equation (28)  

ω =  
√

504.1067884
𝛽4 + 

288.0603414
𝛽2 +  504.1067884

𝑏2
√

𝐷

𝜌ℎ
+ √𝑘                                                      (77) 
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Comparing Equations (33) and (77) we have 

𝐻𝑏𝛽  = √
504.1067884

𝛽4
+ 

288.0603414

𝛽2
+ 504.1067884 

From Equations (34) we have 

𝐻𝑏𝛽  =  √504.1067884φ4 + 288.0603414φ2 + 504.1067884                                                      (78) 

 

Functionally Graded Plate 

A functionally graded plate with length a, width b and a uniform thickness h is considered. The geometry of the plate and 

the coordinate system are shown in Figure 3. 

 

Figure 3: A typical FG rectangular plate element in Cartesian coordinates 

It is assumed that the material properties of the FG plate vary smoothly through the thickness. Based on the volume fraction 

of the constituent material, the Young’s modulus and density of FG plate can be written as functions of thickness coordinate, 

z, as follows (Birman and Byrd [15]):  

𝐸(𝑧) = (𝐸𝑐 − 𝐸𝑚) (
𝑧

ℎ
+

1

2
)

𝑛

+  𝐸𝑚                                                                       (79) 

 (𝑧) = (
𝑐

−  
𝑚

) (
𝑧

ℎ
+

1

2
)

𝑛

+ 
𝑚

                                                                      (80) 

where n is the power law index of the FG rectangular plate, the subscripts m and c show the metal and ceramic surfaces, 

respectively. Due to the small variations of the Poisson’s ratio, , it is assumed to be constant Chakraverty and Pradhan [5]. 

According to this distribution, the bottom surface (z = - 
ℎ

2
) of FG plate pure metal, whereas the top surface (z = 

ℎ

2
) is pure 

ceramic. The stiffness coefficient is 

𝐷 = 𝐷11 = ∫   𝑄11 

ℎ
2

−ℎ
2

𝑍2𝑑𝑧                                                                                                 (81) 

    = ∫  
𝐸(𝑧)

1 −  2
 

ℎ
2

−ℎ
2

𝑍2𝑑𝑧                                                                                          (82) 

=
1

1 −  2
∫  𝐸(𝑧) 

ℎ
2

−ℎ
2

𝑍2𝑑𝑧                                                                               (83) 

=
1

1 −  2
∫  {(𝐸𝑐 − 𝐸𝑚) (

𝑧

ℎ
+

1

2
)

𝑛

+ 𝐸𝑚  } 

ℎ
2

−ℎ
2

𝑍2𝑑𝑧                                (84) 
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=
1

1 −  2
∫  {(𝐸𝑐 − 𝐸𝑚) (

𝑧

ℎ
+

1

2
)

𝑛

  } 𝑍2𝑑𝑧 + ∫   

ℎ
2

−ℎ
2

𝐸𝑚

ℎ
2

−ℎ
2

𝑍2𝑑𝑧             (85) 

=
(𝐸𝑐 − 𝐸𝑚)ℎ3

1 −  2
{

1

𝑛 + 3
−  

1

𝑛 + 2
+  

1

4(𝑛 + 1)
 } + 

𝐸𝑚ℎ3

12(1 −  2)
          (86) 

While the inertia coefficient is 

𝐼0 = ℎ = ∫ (𝑧) 

ℎ
2

−ℎ
2

𝑑𝑧                                                                             (87) 

        =
(

𝑐
− 

𝑚
)ℎ

𝑛 +  1
  +  

𝑚
ℎ                                                             (88) 

Material Properties of the FGM constituents  

An Al/Al2O3 functionally graded plate which is composed of aluminum (as metal) and alumina (as ceramic) is considered. 

The Young’s modulus and density of aluminum are Em = 70 GPa and m = 2700 kg/m3, respectively, and that of alumina 

are Ec = 380 GPa and c = 3800 kg/m3, respectively. The Poisson ratio of the plate is assumed to be constant through the 

thickness and equal to 0.3.  

Table 1: Material Properties of the FGM constituents 

Properties Unit Aluminum (Al) Alumina (Al2O3) 

E GPa 70 380 

 Kg/m3 2700 3800 

 - 0.3 0.3 

III.    RESULTS AND DISCUSSION 

The results obtained from the preceding section are highlighted here. An Al/Al2O3 functionally graded plate which is 

composed of aluminum (as metal) and alumina (as ceramic) is considered. The Young’s modulus and density of aluminum 

are Em = 70 GPa and m = 2700 kg/m3, respectively, and that of alumina are Ec = 380 GPa and c = 3800 kg/m3, respectively. 

The Poisson ratio of the plate is assumed to be constant through the thickness and equal to 0.3.  

The expression for the fundamental natural frequencies of the plate is given as 

 

  𝜔 =  
√𝐴1φ4 + 𝐵1φ2 + 𝐶1

𝑏2
 √

𝐷

𝜌ℎ
+ √𝑘  

The equivalent Winkler parameter is defined as 

𝑘 =  
𝐾𝑤b4

𝐷
 

While the natural frequency equation for the CCCC plate in terms of φ and b is 

𝐻𝑏𝛽  =  √504.1067884φ4 + 288.0603414φ2 + 504.1067884                                                     

Table 2 shows the non-dimensional natural frequencies Hbβ for isotropic CCCC plate with various aspect ratios 𝛽 =
𝑏

𝑎
  

Table 2: Non-dimensional natural frequencies Hbβ for isotropic CCCC plate with various aspect ratios 𝜷 =
𝒃

𝒂
 

kw ks 

Aspect 

Ratio  

𝛽 =
𝑏

𝑎
 

Hbβ 

0 0 0.1 22.517 

  0.2 22.725 
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  0.3 23.111 

  0.4 23.730 

  0.5 24.650 

  0.6 25.945 

  0.7 27.682 

  0.8 29.916 

  0.9 32.683 

  1.0 36.004 

100 0 0.1 25.391 

  0.2 25.599 

  0.3 25.985 

  0.4 26.604 

  0.5 27.524 

  0.6 28.819 

  0.7 30.556 

  0.8 32.790 

  0.9 35.557 

  1.0 37.350 

In Table 2, frequency parameters for clamped (CCCC) plates are validated with different aspect ratios viz. 0.2, 0.4, 0.5, 0.7, 

1.0, 1.5 and 2.0. 

Table 3: Comparison of non-dimensional frequency parameters Hbβ for clamped (CCCC) plates for various aspect 

ratios 

 Non-Dimensional Frequency Parameter 

 

(Kw, Ks) 

Aspect Ratio 

𝛽 =
𝑏

𝑎
 

Present 

study 

Chakraverty and 

Pradhan [5] 

Yang and Shen 

[13] 

Liu and Liew 

[14] 

(0, 0) 0.2 22.725 22.633 - - 

 0.4 23.730 23.647 - - 

 0.5 24.650 24.579 - - 

 0.7 27.682 27.008 - - 

 1.0 36.003 36.000 35.988 35.938 

 1.5 60.863 60.768 - - 

 2.0 98.600 98.318 - - 

(100, 0) 1.0 38.877 37.350 - - 

The present results for frequency parameters are in excellent agreement with open literature. Results obtained are in tandem 

with the those obtained by Chakraverty and Pradhan [5] for aspect ratios 0.2 to 1.0 and those of Yang and Shen [13] as well 

as Liu and Liew [14]for aspect ratio 1. It can be deduced from Table 2 that the Winkler foundation parameter has a dominant 

influence on the frequencies of plates on elastic foundation. Without considering the effect of Winkler elastic foundation, 

an increase in aspect ratios leads to increase in frequency parameters. 

Table 4: The frequency parameters of CCCC FG rectangular plates with different n and aspect ratios, (Kw = 0) 

Power-law exponent 

n 

Aspect ratio (b/a) Present study Chakraverty and Pradhan [5] 

0 0.2 22.725 22.633 

 0.5 24.650 24.579 

 1.0 36.003 35.989 

 2.0 98.600 98.318 

0.2 0.2 20.359 21.176 

 0.5 22.084 22.997 

 1.0 32.255 33.671 
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 2.0 88.336 91.987 

0.5 0.2 19.100 19.879 

 0.5 20.718 21.588 

 1.0 30.261 31.609 

 2.0 82.873 86.354 

1.0 0.2 18.094 18.832 

 0.5 19.626 20.451 

 1.0 28.666 29.945 

 2.0 78.505 81.805 

2.0 0.2 17.287 18.002 

 0.5 18.751 19.549 

 1.0 27.387 28.624 

 2.0 75.005 78.199 

Table 4 shows the non-dimensional frequencies of CCCC FG rectangular plates with different power law exponents, n and 

aspect ratios. It is clear that frequency parameters are increasing with increase in aspect ratios for a given power-law index. 

It is also noticeable that the frequencies are decreasing with increase in power-law indices for a given aspect ratio. 

Table 5: The frequency parameters of square CCCC FG Al/Al2O3 plates with different power-law indices (n) and 

kw = 100 

n Sources Frequency parameters 

0 
Present study 37.701 

Chakraverty and Pradhan [5] 37.350 

0.2 
Present study 35.636 

Chakraverty and Pradhan [5] 35.033 

0.5 
Present study 33.719 

Chakraverty and Pradhan [5] 32.980 

2.0 
Present study 31.052 

Chakraverty and Pradhan [5] 30.066 

The effect of power law index on the frequency of vibration of CCCC FG plate resting on Winkler elastic foundation is 

very interesting. As shown in Table 5, the increase in power law index decreases the frequency parameters of the plate. 

Table 6: Frequency parameters of CCCC FG Al/Al2O3 plates with different aspect ratios  (
𝒃

𝒂
 ) (n = 1, kw = 100) 

𝑏

𝑎
 Sources Frequency parameters 

0.2 
Present study 21.649 

Chakraverty and Pradhan [5] 20.763 

0.5 
Present study 23.181 

Chakraverty and Pradhan [5] 22.266 

1.0 
Present study 32.221 

Chakraverty and Pradhan [5] 31.341 

2.0 
Present study 82.060 

Chakraverty and Pradhan [5] 82.9221 

In Table 6, the comparison of the frequency parameters of CCCC FG plate with those reported by Chakraverty and Pradhan 

[5] using Rayleigh-Ritz method is presented for different aspect ratios. It is observed that with increase in aspect ratios, the 

frequency parameters increase. 
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In Figures 4 and 5, the mode shapes of  CCCC plate for aspect ratios 0.5 and 1, respectively, are shown.  

 

Figure 4: First five mode shapes of CCCC plates (𝜷 = 𝟎. 𝟓) 
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Figure 5: First five mode shapes of CCCC plates (𝜷 = 𝟏) 
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IV.   CONCLUSION 

Integral calculus has been used in this work to evaluate the non-dimensional frequency parameters of isotropic FG 

rectangular plates sitting on Winkler elastic basis using the beam analogy method. The basic assumptions of Kirchhoff's 

linear, elastic, small-deflection theory of bending for thin plates are taken into account. It is evident that adding an elastic 

foundation increases the non-dimensional frequency parameter of the plates. Furthermore, like plates resting on Winkler 

foundation, an increase in aspect ratio, causes a corresponding increase in frequency for plates not subjected to the effect 

of Winkler elastic foundation regardless of the boundary configuration. So, the Winkler foundation parameter has a 

dominant influence on the frequencies of plates. The non-dimensional frequency parameter increases as the number of 

clamped edges in the plate increases. Hence, fixity of supports increases the fundamental natural frequency of the plate, and 

so increases the resistance of the plate to higher forcing frequencies before resonance can occur. It is also observed that an 

increase in power law index decreases the frequency parameters of the plate. These results clearly demonstrate the crucial 

role of stiffness defined by aspect ratios and boundary restraints. The model output was in close agreement with those of 

other researchers to about 99 percent accuracy.  
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